
Poster: User Request as a means to Automate Authorization Hook Placement

Divya Muthukumaran
Pennsylvania State University

muthukum@cse.psu.edu

Trent Jaeger
Pennsylvania State University

tjaeger@cse.psu.edu

Vinod Ganapathy
Rutgers University

vinodg@cs.rutgers.edu

I. ABSTRACT

We consider the problem of retrofitting legacy soft-
ware with mechanisms for authorization policy en-
forcement. This is an important problem for operating
systems, middleware and server applications (jointly,
servers), which manage resources for and provide ser-
vices to multiple, mutually-distrusting clients. Such
servers must ensure that when a subject requests to
perform a security-sensitive operation on an object, the
operation is properly authorized. This goal is typically
achieved by placing calls (termed authorization hooks)
to a reference monitor [1] at suitable locations in the
code of the server. At runtime, the invocation of a
hook results in an authorization query that specifies
the subject, object, and operation. The placement of
authorization hooks must provide complete mediation of
security-sensitive operations performed by the server. If
this property is violated, subjects may be able to access
objects even if they are not authorized to do so.

In the past decade, several efforts have attempted to
place authorization hooks in a variety of servers. For
example, discretionary access control mechanisms de-
ployed in the Linux kernel were found to be insufficient
to protect the security of hosts in a networked world.
The Linux Security Modules (LSM) framework reme-
dies this shortcoming by placing authorization hooks
to enforce more powerful security policies. Even user-
space servers can benefit from similar protection. For
example, the X server manages windows and other
objects for multiple clients. Accesses to such objects
must be mediated, void of which several attacks are
possible. The X server has also therefore been retrofitted
with LSM-style authorization hooks [4]. Similar efforts
now abound for other server applications (e.g., Apache,
Postgres, Dbus, Gconf) [3], [5], [6], [2], operating
systems, and virtual machine monitors.

Unfortunately, these efforts have been beset with
problems. This is because the identification of security-
sensitive operations and the placement of hooks is a
manual procedure, largely driven by informal discus-
sions on mailing lists in the developer community.
There is no consensus on a formal definition of what
constitutes a security-sensitive operation, and no tool
support to identify their occurence in large code-bases.

Not surprisingly, this ad hoc process has resulted in
security holes, in some cases many years after hooks
were deployed [8]. The discussion of which hooks to
deploy can often last years, e.g., the original hook
placement for the X server was proposed in 2003 [4],
deployed in 2007 [9], and subsequent revisions have
added additional hooks. What we therefore need is a
principled way to identify security-sensitive operations
and their occurrence in code, so that legacy servers can
be automatically retrofitted with authorization hooks.

Prior work to address this problem has focused
both on verification of authorization hook placement
to ensure complete mediation and on mining security-
sensitive operations in legacy code. The work on mining
security-sensitive operations is the most closely related
to work, and uses static and dynamic program analysis
to identify possible hook placement locations. However,
these mining techniques rely on domain-specific knowl-
edge (e.g., a specification of the data types that denote
security-sensitive objects), providing which still requires
significant manual effort and a detailed understanding of
the server’s code base.

The main contribution of this work is a novel auto-
mated method for placing authorization hooks in server
code that significantly reduces the burden on developers.
The technique can identify optimal hook placements,
in a manner that both minimizes the number of autho-
rization hooks placed, as well as the number of autho-
rization queries generated at runtime, while providing
complete mediation. To develop the technique, we rely
on a key observation that we gleaned by studying
server code. In a server, clients make requests, which
identifies the objects manipulated and the security-
sensitive operations performed on them. We observe that
when a client makes a deliberate choice of an object
from a collection of objects managed by the server,
that automatically signals the need for authorization.
What security-sensitive operations are performed on the
retrieved object(s) is determined by the code path that
the server takes, which is also an upshot of the user’s
choice.

Based upon this observation, we design a static
program analysis that tracks user choice to identify both
security-sensitive objects and the operations that the
server performs on them. Our analysis only requires a



specification of the statements from which client input
may be obtained (e.g., socket reads), and a language-
specific definition of object containers (e.g., arrays,
lists), to generate a complete authorization hook place-
ment. It uses context-sensitive, flow-insensitive data
flow analysis to track how client input influences the
selection of objects from containers: these are marked
security-sensitive objects. The analysis also tracks how
control flow decisions in code influence how the ob-
jects are manipulated: these manipulations are security-
sensitive operations. The output of this analysis is a
set of program locations where mediation is necessary.
However, placing hooks at all these locations may be
sub-optimal, both in terms of the number of hooks
placed (e.g., a large number of hooks complicates code
maintenance and understanding) and the number of
authorization queries generated at runtime. We therefore
use the control structure of the program to further
optimize the placement of authorization hooks.

We have implemented a prototype tool that applies
this method to C programs using analyses built on
the CIL tool chain [7]. We have evaluated the tool on
programs that have manual mediation for comparison,
such as the X server and postgresql. We also evaluated
the tool in terms of the minimization of programmer
effort it entails and the accuracy of identification of
objects and security sensitive operations in programs.

To summarize, our main contributions are:

• An approach to identifying security-sensitive ob-
jects and operations by leveraging a novel obser-
vation — that a deliberate choice by the client of
an object from a collection managed by the server
signals the need for mediation.

• The design and implementation of a static anal-
ysis tool that leverages the above observation to
automate authorization hook placement in legacy
server applications. This tool also identifies opti-
mization opportunities, i.e., cases where hooks can
be hoisted, thereby reducing the number of hooks
in the source code, and by eliding redundant hook
placements that would otherwise result in extra
authorization queries at runtime.

• Evaluation with four significant server applica-
tions, namely, the X server, postgresql, PennMush,
and memcached, demonstrating that our approach
can significantly reduce the manual burden on
developers in placing authorization hooks. In case
of two of these servers, the X server and postgresql,
there have been efforts spanning multiple years to
place authorization hooks. We show that for these
servers, our approach can automatically infer hook
placements that are comparable to those placed
manually with few false positives and negatives.

REFERENCES

[1] ANDERSON, J. P. Computer security technology planning
study, volume II. Tech. Rep. ESD-TR-73-51, Deputy
for Command and Management Systems, HQ Electronics
Systems Division (AFSC), L. G. Hanscom Field, Bedford,
MA, October 1972.

[2] CARTER, J. Using GConf as an Example of How to
Create an Userspace Object Manager. 2007 SELinux
Symposium (2007).

[3] D.WALSH. Selinux/apache. http://fedoraproject.org/wiki/
SELinux/apache.

[4] KILPATRICK, D., SALAMON, W., AND VANCE, C. Se-
curing the X Window system with SELinux. Tech. Rep.
03-006, NAI Labs, March 2003.

[5] KOHEI, K. Security enhanced postgresql.
SEPostgreSQLIntroduction.

[6] LOVE, R. Get on the D-BUS. http://www.linuxjournal.
com/article/7744, Jan. 2005.

[7] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND
WEIMER, W. Cil: Intermediate language and tools for
analysis and transformation of c programs. In Compiler
Construction, 11th International Conference, CC 2002
(2002), Springer, pp. 213–228.

[8] TAN, L., ZHANG, X., MA, X., XIONG, W., AND ZHOU,
Y. Autoises: automatically inferring security specifica-
tions and detecting violations. In Proceedings of the 17th
conference on Security symposium (Berkeley, CA, USA,
2008), USENIX Association, pp. 379–394.

[9] WALSH, E. Integrating x.org with security-enhanced
linux. In Proceedings of the 2007 Security-Enhanced
Linux Workshop (Mar. 2007).


